5. Primer Functions¶
Note
This Chapter Primer Functions is for beginner. If you have some Python
programming experience, you may skip this chapter.
The following functions
have been heavily used in my daily Data Scientist work.
5.1. *
¶
Single asterisk as used in function declaration allows variable number of arguments passed from calling environment. Inside the function it behaves as a tuple.
:: Python Code:
my_list = [1,2,3] print(my_list) print(*my_list)
:: Ouput:
[1, 2, 3] 1 2 3
5.2. range
¶
:: Python Code:
print(range(5)) print(*range(5)) print(*range(3,8))
:: Ouput:
range(0, 5) 0 1 2 3 4 3 4 5 6 7
5.3. random
¶
More details can be found at:
random
: https://docs.python.org/3/library/random.html#random.randintnp.random
: https://docs.scipy.org/doc/numpy/reference/routines.random.html
5.3.1. random.random
¶
:: Python Code:
import random random.random() # (b - a) * random() + a random.uniform(3,8)
:: Ouput:
0.33844051243073625 7.772024014335885
5.3.2. np.random
¶
:: Python Code:
np.random.random_sample() np.random.random_sample(4) np.random.random_sample([2,4]) # (b - a) * random_sample() + a a = 3; b = 8 (b-a)*np.random.random_sample([2,4])+a
:: Ouput:
0.11919402208670005 array([0.07384755, 0.9005251 , 0.30030561, 0.38221819]) array([[0.76851156, 0.56973309, 0.47074505, 0.7814957 ], [0.5778028 , 0.94653057, 0.51193493, 0.48693931]]) array([[4.65799262, 6.32702018, 6.55545234, 5.45877784], [7.69941994, 4.68709357, 5.49790728, 4.60913966]])
5.4. round
¶
Sometimes, we really do not need the scientific decimals for output
results. So you can use this function to round an array to the given number of decimals.
:: Python Code:
np.round(np.random.random_sample([2,4]),2)
:: Ouput:
array([[0.76, 0.06, 0.41, 0.4 ], [0.07, 0.51, 0.84, 0.76]])
5.5. TODO..¶
:: Python Code:
:: Ouput:
:: Python Code:
:: Ouput:
:: Python Code:
:: Ouput:
:: Python Code:
:: Ouput: