When P = 0.1, y = 1
\(\mu = n\pi = 20(0.1) =\) 2
\(\sigma = \sqrt{n\pi (1-\pi)} = \sqrt{20(0.1)(1-0.1)}\) = 1.3416408
\(z = \frac{y-\mu}{\sigma} = \frac{1-2}{1.341641}\) = -0.7453559
\(P(y\leq1) \approx P(z< -0.7453559) = pnorm(-0.7453559) =\) 0.2280283
When P = 0.3, y = 1
\(\mu = n\pi = 20(0.3) =\) 6
\(\sigma = \sqrt{n\pi (1-\pi)} = \sqrt{20(0.3)(1-0.3)}\) = 2.0493902
\(z = \frac{y-\mu}{\sigma} = \frac{1-6}{2.0493902}\) = -2.4397504
\(P(y\leq1) \approx P(z< -2.43975) = pnorm(-2.43975) =\) 0.0073487
When P = 0.1, y = 1
\(\mu = n\pi = 20(0.1) =\) 2
\(\sigma = \sqrt{n\pi (1-\pi)} = \sqrt{20(0.1)(1-0.1)}\) = 1.3416408
\(z = \frac{y-\mu}{\sigma} = \frac{1.5-2}{1.341641}\) = -0.3726779
\(P(y\leq1) \approx P(z< -0.3726779) = pnorm(-0.3726779) =\) 0.3546941
When P = 0.3, y = 1
\(\mu = n\pi = 20(0.3) =\) 6
\(\sigma = \sqrt{n\pi (1-\pi)} = \sqrt{20(0.3)(1-0.3)}\) = 2.0493902
\(z = \frac{y-\mu}{\sigma} = \frac{1.5-6}{2.0493902}\) = -2.1957753
\(P(y\leq1) \approx P(z< -2.195775) = pnorm(-2.195775) =\) 0.014054
pnorm(1.7) - pnorm(0.7)
= 0.1973982pnorm(0) - pnorm(-1.2)
= 0.38493031 - pnorm(100, 100, 8)
= 0.51 - pnorm(105, 100, 8)
= 0.2659855pnorm(110, 100, 8)
= 0.8943502pnorm(120, 100, 8) - pnorm(88, 100, 8)
= 0.9269831pnorm(108, 100, 8) - pnorm(100, 100, 8)
= 0.3413447